
LLNL-TR-656141

Ordering Traces Logically to
Identify Lateness in Parallel
Programs

K. E. Isaacs, T. Gamblin, A. Bhatele, M. Schulz,
B. Hamann, P. Bremer

June 25, 2014



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Ordering Traces Logically to Identify Lateness in
Parallel Programs

Katherine E. Isaacs∗, Todd Gamblin†, Abhinav Bhatele†, Martin Schulz†, Bernd Hamann∗,
Peer-Timo Bremer†

∗Department of Computer Science, University of California, Davis, California 95616 USA
†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94551 USA

E-mail: ∗{keisaacs, bhamann}@ucdavis.edu, †{tgamblin, bhatele, schulzm, ptbremer}@llnl.gov

Lateness
0μs 33μs

MPI Application

Fig. 1: Trace of a 16 process MPI_Alltoall using the dissemination implementation from libNBC [1]. From the raw physical
time data, shown on the left using Vampir [2], we deduce a logical structure, visualized on the right, and use this structure to
compute a novel lateness metric of each event, shown on the right using color. In this example, we can clearly see that the
lateness from a receive on process 11 propagates to several other processes.

Abstract—Event traces are a valuable tool for understanding
the behavior of parallel programs. Automatically analyzing a
large trace, however, especially without a specific objective, is
difficult. We aid this process by extracting a trace’s logical
structure, an ordering of events derived from their happened-
before relationships. From this perspective, we can calculate
delays relative to peers rather than duration and determine where
they begin and how they propagate. The logical structure also
acts as a platform for comparing and clustering processes as
well as showing communication patterns in a trace visualization.
We present an algorithm for determining this idealized logical
structure from a trace and develop metrics to quantify delays and
differences among processes. We implement this in our novel trace
visualizer, Ravel, and apply our approach to several applications,
demonstrating the accuracy of our extracted structure and its
utility in analyzing these codes.

I. INTRODUCTION

Writing an efficient, scalable parallel program that per-
forms well on a range of parallel architectures is challenging.
Achieving good performance usually involves several, often
tedious, iterations of noticing performance problems, identi-
fying their causes, and reworking the implementation accord-
ingly. Tracing tools, which capture communication events and
visualize them in timeline views (such as Vampir [2], which is
shown in Fig. 1 on the left) have proven themselves as valuable
tools, but also come with drawbacks limiting their wide spread
use: Trace sizes are increasing rapidly as we run on a large
number of processors or over a long duration (increasing the

number of events traced) and complex communication patterns,
common in many large scale codes, are hard to identify and
comprehend. This is already evident even in the tiny example
shown in the figure above.

We need new analysis and visualization tools to help users
understand such complex traces and to aid in determining the
information necessary to optimize the analyzed code. In this
paper, we address this shortcoming by focusing on the under-
lying logical communication structure of a parallel program
based on the happened-before relationships of all traced events
at multiple granularities. This logical structure provides align-
ments of communication operations across processes, enabling
clean visualizations that expose communication patterns, as
can be seen in the right view of Fig. 1. Further, using the
information from this logical structure, we define metrics
that compare events to their logical peers, abstracting only
the performance critical timing information. Specifically, we
define lateness, which measures how delayed an event is
relative to its peers, and differential lateness which measures
how much delay was injected into the system at an event.
Finally, we also provide a metric for comparing delay profiles
of different processes.

Additionally, the logical structure provides the necessary
basis for comparing and clustering processes and with that
the ability to reduce the amount of information required to be
shown in a trace visualization. This improves the scalability
of both analysis and visualization and at the same time helps
the user in focusing on the critical sections of the trace.



Fig. 2: Ravel interface showing multiple views of a pF3D trace
colored by lateness.

We incorporate our structure extraction and metrics, as well
as clustering approaches, in our interactive trace visualizer
Ravel [3] (see Fig. 2).

In this work, we present our work within Ravel on an
algorithm for determining an idealized logical structure from
a trace and develop metrics to quantify delays and differences
among processes. We define temporal metrics that we derive
from the logical structure. In particular, we define “lateness” of
events relative to the logical structure in a trace, which enables
users to quickly identify delayed processes and the bottlenecks
they cause. We use the LULESH shock hydrodynamics proxy
application [4], the Multi-grid (MG) benchmark from the NAS
Parallel Benchmarks (NPB) suite [5], [6], and pF3D [7], a
laser-plasma interaction code, to illustrate our approach.

Further, we demonstrate the effectiveness of our logical
structure extraction technique and the utility of our temporal
metrics through three case studies. The applications used for
these case studies are multiple implementations of collective
operations in MPI [1], a sparse linear solver library [8], and
an in situ analysis application for computing merge trees on a
topological structure [9]. These applications are executed on an
IBM Blue Gene/Q system and on an Infiniband Sandy Bridge
cluster.

The major contributions of this work are:

• A set of rules and heuristics to extract the logical
communication structure of a parallel program from
its execution traces;

• Novel metrics, such as lateness, that help identify
performance bottlenecks or delays in the execution;

• The integration of our analysis techniques into an
interactive visualization tool, Ravel, to compute the
structure and metrics above and visualize them; and

• Case studies demonstrating the accuracy of the new
approach and how it detects and highlights a number
of performance characteristics difficult to obtain from
existing techniques.

II. ANALYZING PARALLEL EXECUTION TRACES

We assume that a parallel trace for a message passing pro-
gram consists of measured events that are either computation

blocks, sends, or receives. We further assume, at a minimum,
that an execution trace is a series of records of the enter and
exit time of each event that invokes a send/receive call, the send
and receive time of each message, and the processes associated
with these calls and messages. We call two matching enter
and exit records an event and two matching send and receive
records a message. In this paper, we focus on MPI, but aside
from a few optional steps, our structure algorithm could be
applied to any other message-passing model.

Parallel execution traces are used for performance analysis
and debugging. Automated trace tools like Kojak [10] or its
successor Scalasca [11] can detect given patterns of known
performance problems, such as the late arrival of a message,
and compute a severity score, which is mapped to source
code. While this helps identifying the locations at which
the bottleneck exists, it typically does not provide sufficient
information about its context and root cause. In particular,
while this can pinpoint very local performance problems,
it cannot identify transitive dependence chains or relations
among processes easily. Their addition of root cause analy-
sis [12] allows the tracking of delay through dependencies,
much like our differential lateness, however, their analysis is
limited to local waiting state calculations instead of taking into
account the context of peer events as we do when calculating
lateness.

Morajko et al. [13] built per-process causality graphs
for discovering structure and detecting propagation and root
causes. They aggregated these graphs by identity, compressing
performance information on the representative graph. This can
unduly emphasize boundary behavior of a small number of
processes while hiding the more extreme behavior of the larger
clusters.

Traces are also used to determine the critical path through
a program and analyze performance in that context [14], [15].
However, it can be unclear how the critical path interacts with
the rest of the trace to cause issues. Further, critical paths
can be lengthy, often require costly reverse playback, and can
obscure subpaths of interest.

Manual trace analysis is often facilitated through timeline
visualization: events are arranged in order of increasing time
on the horizontal axis and in rank order by process id on
the vertical axis. Fig. 1 (left) is a typical example taken from
Vampir [2]. Other trace visualizers like Jumpshot [16] or Par-
aver [17] provide similar views. While such timelines allow the
user to make inferences about timing directly from the spatial
layout, excessive detail makes finding areas of interest difficult
and clutters the visualization making interpretation arduous as
dependencies are hard to follow. Our logical structure provides
another way to visualize traces, the details of which can be
found in [3]. In this paper we employ Vampir as one example
of an established trace visualization tool using a conventional
timeline view and Ravel to illustrate our logical structure and
metrics.

Many tools [18], [19], [20] have focused on high-level,
statistical detection of program behavior using clustering and
wavelet techniques in traces. While these numerical techniques
provide useful high-level structure, they do not help program-
mers understand local logical dependence chains in commu-
nication threads. Such algorithms could easily be combined



Partition Ordering Message

Related Communication

(a) Matching sends and receives indicate
events are related and should be merged.

Partition Ordering Merged Partitions

(b) Ordering relations for merged partitions
are derived from the pre-merge neighbors.

Partition Ordering Merged Partition

(c) Strongly connected components are
merged into single partitions.

Fig. 3: Mandatory Partitions

with our approach to interpret aggregate metrics in our logical
structure.

In contrast to existing approaches, we transform the trace
into its underlying logical structure of communication and
perform analysis in the context of this structure. We derive
metrics for events using the structure and the physical timing
information from the trace. Fig. 1 (right) shows a visualization
of our logical trace, where communication structure is uncov-
ered and timing is incorporated by coloring via our lateness
metric. This logical structure is obfuscated by performance
problems in the figure on the left, so the relationship between
the algorithm and the timing problems is not clear.

III. EXTRACTING LOGICAL STRUCTURE

We consider the logical structure of a program to be an
ordering of events consistent with that program. Ideally, this
structure reflects the developers’ intended organization, but
due to either programming errors or ambiguities in assigning
logical time steps the structure may differ. In general, our goal
is to determine which sets of events are intended to happen
simultaneously for the purpose of comparing and analyzing
their demonstrated versus ideal behavior.

We use the following relationships and definitions based on
Lamport [21]. The happened-before relation (→) is a partial
order where (1) for events a, b of the same process, a→ b if a
occurs before b and (2) for matching send and receive events
s, r, s → r. Lamport calls events c, d concurrent if they are
not ordered, i.e., c 6→ d, d 6→ c.

The Lamport clock is a function C mapping a number to
each event such that for events a, b, C(a) < C(b) if a → b.
This constraint is called the clock condition. Our assigned
logical steps satisfy Lamport’s clock condition, but we add
further constraints. First, it is often intuitive to think of the
communication of a program in terms of different phases, e.g.,
a neighborhood exchange or a global reduction (i.e., we assume
a very fine grained definition of a phase). Assuming we have
a set of phases, detected by our algorithm or specified by the
user, we ensure they do not overlap. In terms of the clock
condition this means that for phases P → Q with events
pi, qi, respectively, C(pi) < C(qj)∀pi ∈ P, qj ∈ Q. This
condition ensures that the ordering in one phase is not affected
by other phases. Second, rather than assuming that each event
happens as soon as possible, we aim to discover the events that
conceptually should happen simultaneously, e.g., all sends at
one level of a binomial tree broadcast.

In particular, we focus on events representing messages
since they impose happened-before relations between pro-

cesses and thus contribute to a global happened-before struc-
ture built from the individual process timelines. All other
(local per process) events are aggregated into a single event
assumed to cover the entire time between messages, though
more detailed assignments are possible. We create the logical
structure in two steps: First, we infer the partitioning into
phases (or sub-phases) and, second we assign logical time steps
within and across partitions.

A. Partitioning

Organizing all communication events into phases not only
matches the intuition of program developers, but also has a
number of practical advantages. Most importantly, partitioning
the trace into phases makes the computation and subsequent
analysis a per-partition rather than a per-trace operation, which
significantly simplifies and accelerates the process. We present
graph-based algorithms to first identify inseparable groups
of events and subsequently merge these to define phases.
However, general phase detection is a difficult challenge [22],
[23], [24], [25], [26], [27], especially since the “correct”
partition is often subjective or not well-defined. Consequently,
we optionally allow users to specify a partitioning directly to
accommodate application specific details.

Mandatory Partitions. The algorithm starts by identifying
mandatory partitions given by groups of events that due to
ordering constrains or semantic reasons cannot be separated.
Given a set of MPI events with their happened-before relations
represented as a directed acyclic graph (DAG), we construct
the partitioning in a bottom-up fashion that initially assigns
each event its own partition (Fig. 3a). Semantically, each
message (matching send and receive) should belong to a single
partition and thus we merge their corresponding partitions
(Fig. 3b). However, as shown in the figure, this can introduce
cycles in the graph which prevents a linear ordering among the
corresponding partitions. To restore a linear order we merge all
partitions that form a strongly connected component, restoring
the partition graph to a DAG (Fig. 3b). The resulting partitions
are minimal groups of events that support a total order without
separating messages. However, in practice, the resulting par-
titions are often very fine-grained as even simple operations
such as MPI_Allreduce can be subdivided significantly.
Since this typically does not match the intuition or intent of the
developers we present additional techniques to further merge
partitions if desired.

Waitall Partitions. One common construct in parallel appli-
cations is MPI_Waitall, which causes a process to wait
until a given set of prior MPI calls have completed. We
merge all partitions containing events associated with the



Steps

Leaps

Fig. 4: Merging Leaps in LULESH. The graph in terms of leaps is shown on top. The bottom shows the individual processes as
they would be stepped with that leap graph. The result of the strongly connected component merge is the left image. The gray
leap merges in its succeeding leaps until it contains all processes, resulting in the center image. The remaining purple leap is
significantly closer to the gray leap than the next one (not shown), so it is merged backwards, resulting in the right image.

same MPI_Waitall as an additional semantic constraint.
However, the set of events handled by each MPI_Waitall
is not directly available in our traces, so we determine the
set heuristically and make this merging optional. We assume
that all calls associated with the MPI_Waitall are not inter-
spersed with receive events or collective, wait, or test calls and
thus we assume that all send events between the last such call
and an MPI_Waitall belong to that MPI_Waitall. The
reason receive events are included in the former list is that in
the trace any receive call associated with the MPI_Waitall
ends during that MPI_Waitall.

complete_leaps (partitions);
all leaps = compute_leaps (partitions);
k = 0;
while k < |all leaps| do

leap = all leaps[k];
changed = TRUE;
while changed and not complete (leap) do

changed = FALSE;
for p in partitions (leap) do

a,b = compute_leap_distances (p);
if b � a then

merge_backward (p);
changed = TRUE;

else
if will_expand (p) then

merge_at_leap (p);
changed = TRUE;

end
end

end
end
if not complete (leap) and force merge then

force_full_merge (leap);
else

k = k+1;
end

end
Algorithm 1: Complete leaps through merging partitions.

Leap Partitions. There may exist messages that do not result
in a strongly connected component in the sense of Fig. 3,
yet nevertheless logically belong together as part of the same
phase. Fig. 4 shows an example taken from an eight process
trace of LULESH [4]. Many of the communication events have
been grouped, resulting in the large blue partition. However,

a few messages on either side are isolated and thus are not
included. In bulk synchronous codes, such as LULESH, we
expect all processes to participate in each communication
phase and thus we provide the option to merge partitions until
this property is satisfied. More formally, we define a leap as
all the partitions with the same graph distance from the source
of the partition DAG.1 We merge partitions until each leap
contains events from all processes using Algorithm 1.

Starting from the first leap, we determine whether it is
complete (contains events from all processes). Should this not
be the case, we begin processing its member partitions. Each
partition computes its leap distance as the minimum of the
first event entry time for each of its processes and the event
exit time of their previous event in the partition’s previous-
leap neighbors. By construction, any previous leap is complete
and thus we prefer merging at the leap – pulling in un-
processed partitions from the next leap – to merging backwards
– extending completed leaps. In practice, we typically only
consider merging backwards if the incoming leap distance is
more than an order of magnitude (factor of ten) smaller than
the outgoing one. Once the direction of a potential merge has
been established we always execute a backward merge, but
only merge in from the next leap if this expands the set of
processes participating in the merge. In this manner the current
leap can shrink or grow and we repeat this process until the
leap stabilizes. Depending on the application, the resulting
stable leap may still not contain all processes. In this case
we allow the user to either force all corresponding partitions
to merge in all their successors before restarting the process
or to accept the incomplete leap and continue.

Another option during the leap merge concerns the treat-
ment of collectives. As some collectives act in a synchronizing
manner, and thus our phase clock condition holds on either
side of them, we also give the user the option to disallow any
merge between partitions that fall on opposite sides of these
collectives.

In the example of Fig. 4, the gray partition on the left
successively merges in the succeeding partitions until it has
merged in the blue one and thus contains all eight processes.
Subsequently, the purple partition merges backward since
in this case it is significantly closer to the incoming gray

1Intuitively, the leap is similar to rank in a graded poset, but we avoid that
term due to confusion with MPI ranks.



(a) A Vampir visualization of a stencil in the pF3D
communication benchmark.

(b) We create a happened-before graph
containing only the send events.

(c) Stride boundaries are set based on
graph distance.

(d) We use strides to position
sends in logical time.

1

2

3

4

5

6

7

0

(e) Sends are positioned at the end of their stride.
Receives are filled from the earliest step that meets
happened-before constraints.

1

2

3

4

5

6

7

0

(f) We insert aggregated events (green) before each
communication event. This spans all real time which
is used for analysis in Section IV.

Fig. 5: Step Assignment. Sends are yellow. Receives are blue. Alternating white and gray backgrounds denote stride boundaries.

one than to the outgoing leap (not shown). The particular
threshold to decide the merge direction and whether to force
completed partitions should reflect the user’s knowledge (or
expectations) of the application in order to create the most
intuitive partitioning.

While the algorithms described above may not accurately
detect all phases, they are simple to implement, easy to adapt,
and in our experience create intuitive partitions well-aligned
with the developer’s intention for all practical cases.

B. Local and Global Step Assignment

In Section III-A we created a DAG of partitions containing
related communication events. Subsequently, we assign logical
steps first within each partition locally and then globally
across partitions, defining the logical structure. The local step
assignment follows two simple principles: First, all happened-
before relationships must be strictly maintained, i.e., a → b
implies step(a) < step(b); and second, send events have a
greater impact than receives on the communication structure.
The latter is a consequence of the fact that the order of receives
is not always uniquely defined by the program and some
events, such as MPI_Waitall, may serve as the receive for
multiple sends. Consequently, we initially use only the sends
to define the communication structure. Once the local (per-
partition) order for all sends has been determined we introduce
the receives and ultimately the compute events to the per-
partition step assignment. We use an eight process run of
the pF3D communication benchmark, shown in Fig. 5, as a
working example throughout our explanation.

Send Strides. The send events in a trace typically define most
of the communication structure and thus we start the local step
assignment by grouping sends into strides. Strides are defined
by the graph distances within the partition considering only
the send events. More specifically, we create a sparse version
of the happened-before graph of each partition that contains
only the sends and their aggregated dependencies (Fig. 5b). We
subsequently group sends according to their stride (Fig. 5c. We
align the strides in logical time and assign preliminary steps
accordingly (Fig. 5d). Not all processors contain a send in

all strides. Next, we re-introduce the receives such that the
ordering is preserved, all sends within a stride are assigned
the same step, and receives are placed as early as possible
while still maintaining their happened-before relationships
(Fig. 5e). Finally, we insert aggregated computation events
representing all processing between communication events
(Fig. 5f). Defining these aggregated events allows us to account
for all physical time spanned by the trace, which is helpful
when defining the temporal metrics in Section IV. To assign
global steps, we shift the local step assignment within each
partition to be after all the steps occupied by its predecessors in
the partition DAG, thereby enforcing global happened-before
relationships.

IV. TEMPORAL METRICS

By design, we avoid relying on wall-clock timing infor-
mation when determining the logical structure of a trace. This
produces a more abstract and easier to process representation
of a trace, in addition to avoiding problems with clock skew
and synchronization. Ultimately, however, the timing of events
determines where delays or bottlenecks occur and which
part of the program is responsible. We therefore restore the
temporal information by computing various temporal metrics
and map these metrics onto the logical structure as attributes
for easy interpretation.

Lateness. Simple examples of such metrics are event-based
indicators, such as entry or exit time or duration, all of which
can be computed directly and without the logical structure.
However, the true power of our technique comes from compar-
ing such simple event-centric metrics across logical partitions.
For example, comparing the exit times of events in the same
partition allows one to track delays. In particular, we define
the lateness of an event as the difference in exit time between
itself and the earliest event sharing the step in the partition:

le = e.exit−min{x.exit|e, x ∈ P, x.step = e.step}

where P is the set of events within a partition. By restricting
the computation to partitions we take advantage of the leap
merging. In bulk-synchronous codes leaps typically contain
events from all processes and thus lateness is calculated



Fig. 6: Logical (top) and physical (bottom) time visualization
of a 16 process execution of MG. Communication events are
colored using the lateness metric. The first process becomes
late during an aggregated non-message event. The lateness
spreads through messages to the other processes.

globally. This can also be enforced by a post-stepping merge
across shared global steps. However, for codes with different
process-groups that perform separate and distinct actions, the
partition ensures that only related events are compared. For
more complex arrangements the user can also manually specify
groups of partitions to consider when computing metrics.

Fig. 6 shows a portion of a 16 process MG trace visualized
in Ravel with communication events colored by the lateness
metric. Ravel displays both a traditional physical timeline
and a logical timeline. Both views show a delay in a non-
communication event on the first process propagates to other
processes. The logical time view highlights a propagation of
lateness along processes and along messages to other pro-
cesses. This leads us to classify the conditions that contribute
to the lateness of an event depending on whether the event in
question is receiving a message or not. A late, non-receiving
event whose predecessor is not late is likely responsible for
the delay, perhaps due to load imbalance in the computation
(Fig. 7a). If the predecessor is late as well (Fig. 7b), lateness
has been propagated and was likely caused upstream. Similarly,
a late receiving event whose corresponding sender is not late
(Fig. 7c) indicates that the message has either been delayed
in flight, e.g., due to contention in the network, or is late
because of the processing needed to perform a receive, which
could be caused by e.g., a slow buffer allocation. Finally,
a late receive with a matching late send indicates lateness
propagation across processes (Fig. 7d). The aggregated non-
message events created in global step assignment are necessary
to differentiate between in-process and across-process lateness.
One interesting and useful property of lateness is that it
naturally “resets” once all processes become equally late. For
example, a reduction down to a single process resets the
lateness, as would a barrier or simply a load imbalance that,
through neighbor exchanges, has propagated globally.

Differential Lateness. Lateness provides a good high level

Lateness in Event

(a) A non-receiving event is late
but its predecessor is not imply-
ing the event itself caused the
delay.

Lateness Propagated Along Process

(b) A non-receiving event is late
and so is its predecessor, imply-
ing the lateness was propagated.

Lateness in Message

(c) A receiving event is late but
the corresponding sender is not,
implying that the lateness was
created in flight.

Lateness Propagated Along Message

(d) A receiving event is late and
so is its matching send, imply-
ing that we waited for a late
message.

Fig. 7: Creation and propagation of lateness for non-receiving
(a,b) and receiving (c,d) events.

overview of potential root causes of delays. Especially when
coupled with the visualizations in Ravel, a user can quickly
find the first late event and continue a more detailed analysis
from there. However, in very large or complex traces, identi-
fying these patterns becomes challenging, meaning techniques
are necessary to directly identify the likely cause of a problem.
To this end we propose to analyze differential lateness: the
difference between the lateness attributed to prior events and
the lateness at exit time:

de = max{le −max{lx|x→ e, @y s.t. x→ y ∧ y → e}, 0}

Instead of showing all events that are late, differential lateness
highlights the events and processes that cause the lateness.
Note, though, that we do not allow negative lateness: while
it sometimes can highlight events that compensate for earlier
problems, negative lateness primarily occurs at reset bound-
aries leading to somewhat confusing and difficult to interpret
configurations.

Clustering. In addition to intuitive metrics, the logical struc-
ture also provides new opportunities to compare per-process
traces and to use this information to cluster processes into
classes of similar behavior or to summarize that behavior to
ease analysis. This feature has been used in Ravel to aid visual
exploration at higher process counts. It is difficult to cluster
processes in physical time as there exists no direct correspon-
dence between traces from different processes. Instead, logical
time provides this correspondence and provides a simple way
to define various similarity metrics.

For example, one can compare per-process traces using
their delay profile. To this end, we calculate the distance be-
tween two processes by the average of their squared difference
in lateness at each logical step. At steps where an event is
present in one process, but not the other, we substitute the last
known lateness value if it exists. While the process is absent
in that step, we assume that throughout a process, lateness
remains the same unless some event occurs to change it.
Steps where neither process is active are skipped. We average
the squared differences at each step as some processes may



have more matching steps than others. In the case where no
steps yield a difference value, we assume the processes have
maximum distance. Fig. 8 provides an example calculation.
This metric is based on temporal behavior, not on the specific
calls made by the process. This means processes performing
different actions could be clustered together if they are simi-
larly delayed, regardless of whether they match function calls
exactly.

Logical Time

Fig. 8: Example calculation of distance between processes.

This metric may be used over all logical steps in the trace.
However, in some cases it may be more beneficial to calculate
process distances in each partition in the logical structure indi-
vidually. Partitions are meant to be communication phases and
phases may exhibit different behavior. Thus, when examining
a subset of the trace, it may make more sense to examine this
metric at the partition level. Depending on the partitioning
options used, there may be several partitions at each logical
step. The distance metric can be applied to each of those
partitions separately or across all the partitions active over the
same set of steps.

V. RESULTS

We execute applications on two radically different architec-
tures: a large Blue Gene/Q installation as well as an Infiniband
cluster with 12 Sandy Bridge cores per node split into two
sockets. The former system uses IBM’s compute node kernel
stack and MPI implementation, while the latter system uses a
Red Hat derived Linux distribution combined with MVAPICH.
On both machines we obtain our traces using VampirTrace [28]
and store them in the Open Trace Format (OTF) [29].

A. MPI Collective Operations

Collective algorithms are an important part of MPI be-
cause they allow groups of processes to work together for
efficient global communication. For example, MPI provides an
MPI_Allreduce algorithm that performs a distributed paral-
lel sum (or other associative operation) and puts its result on all
processes. Collectives have dense communication patterns, and
they pose a challenge for existing trace tools, especially when
the system is noisy and dependence chains are perturbed across
MPI processes. We use these as a case study of our tool to
demonstrate its ability to correctly determine logical structure
and to showcase how we can display collective operations in an
intelligible manner. For our experiments, we used libNBC [1],
an open source implementation of non-blocking MPI collec-
tive operations. We chose libNBC because the algorithms it
implements for its collectives are well-understood, allowing
us to verify our logical structure.

We first consider the binomial tree implementation of
MPI_Allreduce. Fig. 9 shows the unprocessed trace as
visualized by Vampir and its extracted logical structure as

Fig. 9: Visualization of 64 process binomial tree
MPI_Allreduce in physical time by Vampir (top)
and logical time by Ravel (bottom). In logical time, we
color by communication partition. We are able to identify the
binomial tree levels though they overlap in physical time.

visualized by Ravel. The algorithm performs a parallel reduc-
tion with a binomial tree embedded in the MPI ranks, then it
broadcasts the global sum back along another binomial tree.
Our logical structure captures the send-receive pairs at each
level of the tree, despite the overlap observed in the physical
time visualization. All of our partitioning options yield the
same logical steps but different partitions. In the figure we
show the partitioning resulting from mandatory merging and
merging across global steps.

Lateness

}

}

}

}
}

}
1

1

2

3

4

5

Fig. 10: Ring algorithm MPI_Allreduce on 64 processes.
Coloring is done by lateness, showing propagation. We find
two events with high differential lateness (circled). A clustering
of five groups is labeled on the right.

Fig. 10 shows the logical time view of a ring implementa-
tion of MPI_Allreduce, colored by lateness. In this linear-
time algorithm, each of the P processors sends to its neighbor
and accumulates a sum from each rank’s contribution. Again
our logical structure accurately determines the P rounds of
this communication. We also observe the spread of lateness



from the 45th process and its continued effects through the
remainder of the rounds. Also visible are the handful of late
processes in the final rounds. The circled steps were the only
ones calculated to have high differential lateness, indicating
these were the sources of the other delays. Closer examination
reveals lateness is injected at a messaging event, possibly due
to congestion on the network. We hierarchically cluster the
processes and explore the result in Ravel. The clustering for
five groups is shown in the figure denoted by brackets on the
right side. The first cluster captures the processes at both ends
of the rank space that become very late in the final rounds.
The largest cluster represents the processes largely unaffected
by the two delay sources.

B. Algebraic Multigrid

Algebraic multigrid techniques solve sparse linear systems
that may or may not be associated with an actual spatial grid.
The method begins with a fine-grained grid or matrix that
is successively coarsened until it can be solved with reason-
able error. It interpolates back from the coarsened solution
to the fine-grained one. This so-called V-cycle is repeated
until it converges upon a solution. We examine an algebraic
multigrid method implemented in the hypre scalable solver
library [8], via the AMG2013 benchmark, which is part of the
CORAL [30] benchmark suite. This gives us an opportunity to
verify our structure algorithm on a more complicated example.

Fig. 11: Partitioning of AMG2013 solve run on 512 processes.
The last 64 processes partition independently of the others.

Fig. 11 shows a portion of the logical structure we ex-
tracted, using the leap merge option, from a 512 process trace
of the AMG2013 solver algorithm. The events are colored by
partition. We omit the message lines to focus on the partitions.
Our structure separates the first 448 processes into distinct
partitions from the remaining 64. This led us to examine the
rest of the structure and discover that the two process groups
never interact. Upon consulting with the development team and
verifying the results, we learned that the final 64 processes are
assigned to the anisotropic portion of the domain, which is
why they behave differently and independently, as found by
our logical structure.

Fig. 12: Logical structure of AMG2013 solve on 512 pro-
cesses. The overview histogram on the bottom shows twelve
repetitions of the lateness profile, corresponding to the itera-
tions of the V-cycle.

Fig. 13: Partitioning of a single iteration of the AMG2013
solve, focusing on the first 448 processes. The individual
partitions match well with what we expect from the levels
of the V-cycle. We see the amount of communication increase
as processes in coarser levels gain more neighbors. Eventually
some processes become inactive due to coarsening, resulting
in white lines across the long blue partitions.

Examining lateness in the trace, shown in Fig. 12, the
overview histogram of lateness at the bottom of the figure
revealed a recurring pattern over logical time. Differential
lateness (not shown) spikes at the beginning of the late step
regions. All of the events with high differential lateness are
computation rather than communication, probably due to the
imbalance caused by coarsening. The number of repetitions
correspond to the iterations of the V-cycle reported by the run.

Having noticed iteration boundaries, we narrow our focus
to a single iteration, shown in Fig. 13, once again colored
by partition. For simplicity we show only the 448 process
partition. In the solve, each level performs a relaxation step
and one to two matrix-vector products. Our algorithm separates
these in partitioning except where there are processes without
work, at which point the aggressive merging combines a relax-
ation step with a matrix-vector product. Initially, the partitions
are short, but as the grid gets coarser, participating processes
need to send information to more neighbors, resulting in
longer partitions. At the same time, the coarsening leaves some
processes without work, seen as white lines (no events) in
the wide blue partitions. This behavior is expected, suggesting
the logical structure extracted by our partitioning approach is
consistent with AMG’s algorithm design.

C. Massively Parallel Merge Trees

Merge trees are topological structures that can aid in the
analysis of large scale simulations [31], [32], [9]. We analyze
a massively parallel algorithm to compute them in situ, which
avoids the limitations and penalties of writing out the data to
be analyzed post-mortem.

The algorithm begins with each process handling its local
portion of the data. As the computation portion is data-
dependent and the data decomposition follows that of the
simulation it runs with, load imbalance can be an issue. After
the local computation step, each process sends its partial results
to a designated gather process. The gather processes combine
the results from their children and send them along to both
their gather process at the next level of the tree and back down
toward the leaves of the gather tree. This continues until the
root of the gather tree has integrated the results and sent them
back to the leaves. At each gather level, the messages to the



leaves are sent along the tree structure to divide the messaging
burden amongst the processes.

Fig. 14: Complete trace of a 16 process, 4-ary merge tree in
the default layout, i.e., with the root at process 0, shown in
logical time (top) and physical time (bottom) and colored by
lateness.

The leaves of the gather tree comprise all processes gener-
ating data from the simulation, which is usually all processes
running the application. As such, some processes have to take
on extra roles as the internal vertices of the gather tree. These
roles are assigned modulo-k when the gather is done via a
k-ary tree. For example, in a binary tree, the leaves first send
to gather processes 0, 2, 4 . . . and those processes in turn send
to the next level gather processes of 0, 4, 8, . . ., and so forth.

Fig. 14 shows the logical and physical time visualizations
of a complete 16 process, 4-ary merge tree, both colored by
lateness. As expected, the lateness comes from data-dependent
load imbalance in the initial computation. Our structure extrac-
tion successfully retrieves the communication pattern, showing
successive groups of four processes sending up the tree, as
well as the updates sent back down. However, this also reveals
a potential inefficiency in the implementation. Once all the
information has been gathered at the root, the update is sent
to the root’s leaf (initial gather) processes rather than its higher-
level gather processes (4, 8, 12).

Further examination with 8-ary gathers at 1,024 (Fig. 15a)
and 16,384 (Fig. 15b) processes, respectively, indicates this
problem occurs at every level of the gather. This manifests as a
repeating skewed parallelogram motif, the panhandle showing
the sends to the leaf processes nearby in rank space first.
Furthermore, at many steps very few processes are active,
suggesting that not only are gather processes prioritizing
updates to their leaves over their higher level gather children,
they are also prioritizing all of the downward updates over
sending information upwards to be combined.

After these artifacts were brought to the attention of the
developers, they incorporated an improved communication
ordering into the next iteration of their algorithm. The resulting
traces are shown in Fig. 15c and Fig. 15d, respectively. The
panhandle is no longer present and in most steps more of the
processes are participating.

The 1,024 process traces exhibit more lateness than the
16,384 process ones. This is because they were executed on the
same simulation data. As the local data in the 16,384 process

run is smaller in size, there is less variability in the initial
computation, resulting in less lateness.

(a) Logical steps resulting from developer partitions.

(b) Logical steps resulting from our partitions.

Fig. 16: 1,024 process merge tree, improved implementation,
colored by partitioning. In (a) we use partitions from the
merge tree developers. In (b) we derive partitions using our
algorithm. The partitioning and resulting logical structure is
highly similar.

Our logical structure finds the gather tree in both the
original and improved implementations. In a 1,024 process 8-
ary gather tree, the root has only two children as 1,024 is not
a power of eight, and thus the next level has 16 children total.
In the later rounds of the gather tree, we see 16 parallelogram
groupings, as marked in Fig. 15a. Similarly, in a 16,384
process 8-ary gather tree, the root has only four children. These
four major groups are also apparent in our logical structure,
marked in Fig. 15b.

We obtained communication phase information from the
developers and compared it to our partitioning with the leap
merge and merging across global steps. Fig. 16 shows the main
difference is that our algorithm breaks the initial phase into
the up and down partitions, but even with this difference, the
resulting logical structures are highly similar.

Closer examination of the original merge tree implementa-
tion reveals some of the shortcomings of a strict adherence
to the Lamport happened-before ordering. Fig. 17 shows a
zoomed-in view of the tree from Fig. 15a with a single commu-
nication line drawn to highlight the problem. In the first step,
the (level-0) leaves send to their level-1 gather process which
responds with corrections and subsequently sends the result
to the level-2 process. However, the blue branch completes its
level-1 gather and sends to its level-2 result before the topmost
level-1 gather has received all messages from its children. Due
to the over-provisioning, the level-2 gather as well as the top-
most level-1 gather are handled by the same process. As a



(a) 1,024 process merge tree, original implementation. (b) 16,384 process merge tree, original implementation.

(c) 1,024 process merge tree, improved implementation. (d) 16,384 process merge tree, improved implementation.

Fig. 15: Logical structure of an 8-ary merge tree, original and improved implementations, with 1,024 and 16,384 processes. The
skewed parallelograms are cascading updates towards the leaves. The original implementation, (a) and (b), has fewer processes
active at each step than the improved implementation, (c) and (d). In (a) and (b), we mark high-level subtrees in the gather.

Fig. 17: A small portion of Fig. 15a highlighting a potential
problem with strictly adhering to the happened-before rela-
tions. The top gather process receives a premature message
from the gather process of a fast group on the bottom.
To enforce the true ordering of events, all remaining sends
must be shifted toward the right, preventing logically parallel
communication from being assigned the same step.

result the early receive causes a severe misalignment of the
steps with all remaining communication events of the top-
most process being shifted towards the right. This is a direct
consequence of the happened-before ordering and thus cannot
be avoided. Nevertheless, in this case the early message does
not actually change the order of computation. Thus, potentially
allowing the stepping algorithm to violate the happened-before
relation to create the expected regular patterns would likely
result in a more intuitive visualization and more meaningful
metrics. However, it is not clear under which circumstances
such a re-ordering should be permissible and this will be the
subject of future research.

VI. CONCLUSION

We have presented a new approach for analyzing execution
traces obtained from parallel programs. We extract a logical

structure, meant to capture the intended ordering of event in a
program. This technique utilizes happened-before relationships
not only on the individual event scale, but also on the scale
of communication phases and even concurrent sends. Since
the logical structure, on purpose, hides timing information,
we explicitly define temporal metrics and map them onto the
logical structure. In particular, we exploit the logical structure
by capturing delay experienced by events relative to their peers,
providing an abstract view of lateness. Using the happens-
before relationship encoded in the logical structure, we use this
information to both pinpoint the original cause of a bottleneck
and to study its propagation.

Through a series of case studies, we have demonstrated
the fidelity of our algorithm in identifying structures across a
variety of communication profiles. We have also shown the
correctness of our metrics in locating both load imbalance
(merge tree) and communication (libNBC) delays. We intend
to expand the types of events and dependencies handled by our
structure extraction algorithm and further leverage the structure
for detection of performance issues.

ACKNOWLEDGMENT

The authors would like to thank Ulrike Yang and Aaditya
Landge for their guidance regarding AMG2013 and the parallel
merge tree application respectively.

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. LLNL-TR-
656141.



REFERENCES

[1] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and Per-
formance Analysis of Non-Blocking Collective Operations for MPI,” in
Proceedings of the 2007 International Conference on High Performance
Computing, Networking, Storage and Analysis, SC07. IEEE Computer
Society/ACM, Nov. 2007.

[2] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach,
“VAMPIR: Visualization and analysis of MPI resources,” Supercom-
puter, vol. 12, no. 1, pp. 69–80, 1996.

[3] K. E. Isaacs, P.-T. Bremer, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz,
and B. Hamann, “Combing the communication hairball: Visualizing
parallel execution traces using logical time,” Under Review.

[4] “Hydrodynamics Challenge Problem, Lawrence Livermore National
Laboratory,” Tech. Rep. LLNL-TR-490254.

[5] “NAS parallel benchmarks (NPB).” [Online]. Available: https:
//www.nas.nasa.gov/publications/npb.html

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
and R. A. Fatoohi, “The NAS parallel benchmarks,” The International
Journal of Supercomputer Applications, vol. 5, no. 3, pp. 63–73, 1991.

[7] C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel, L. J. Suter, and
E. A. Williams, “Filamentation and forward brillouin scatter of entire
smoothed and aberrated laser beams,” Physics of Plasmas, vol. 7, no. 5,
pp. 2023–2032, 2000.

[8] R. Falgout, J. Jones, and U. Yang, “The design and implementation
of hypre, a library of parallel high performance preconditioners,”
in Numerical Solution of Partial Differential Equations on Parallel
Computers, A. Bruaset and A. Tveito, Eds. Springer-Verlag, 2006,
vol. 51, pp. 267–294.

[9] J. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thompson,
H. Yu, F. Zhang, and J. Chen, “Combining in-situ and in-transit pro-
cessing to enable extreme-scale scientific analysis,” in Proc. ACM/IEEE
Conference on Supercomputing (SC12), 2012.

[10] B. Mohr and F. Wolf, “KOJAK: A tool set for automatic performance
analysis of parallel programs,” in 9th International Euro-Par Conference
(EUROPAR), Klagenfurt, Austria, Aug. 2003.

[11] F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, W. Frings, K. Fürlinger,
M. Geimer, M.-A. Hermanns, B. Mohr, S. Moore, M. Pfeifer, and
Z. Szebenyi, “Usage of the SCALASCA toolset for scalable perfor-
mance analysis of large-scale parallel applications,” in Tools for High
Performance Computing. Springer Berlin Heidelberg, 2008, pp. 157–
167.

[12] D. Böhme, M. Geimer, F. Wolf, and L. Arnold, “Identifying the root
causes of wait states in large-scale parallel applications,” in Proc. of
the 39th International Conference on Parallel Processing (ICPP), San
Diego, CA, USA. IEEE Computer Society, Sep. 2010, pp. 90–100.

[13] O. Morajko, A. Morajko, T. Margalef, and E. Luque, “On-line per-
formance modeling for mpi applications,” in Euro-Par 2008 Parallel
Processing, ser. Lecture Notes in Computer Science, E. Luque, T. Mar-
galef, and D. Bentez, Eds. Springer Berlin Heidelberg, 2008, vol.
5168, pp. 68–77.

[14] M. Schulz, “Extracting critical path graphs from mpi applications,” in
Cluster Computing. IEEE International, September 2005, pp. 1–10.

[15] D. Boehme, F. Wolf, B. R. de Supinski, M. Schulz, and M. Geimer,
“Scalable critical-path based performance analysis,” Parallel and Dis-
tributed Processing Symposium, pp. 1330 – 1340, 2012.

[16] O. Zaki, E. Lusk, W. Gropp, and D. Swider, “Toward scalable per-
formance visualization with Jumpshot,” High Performance Computing
Applications, vol. 13, no. 2, pp. 277–288, Fall 1999.

[17] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool to
visualize and analyze parallel code,” 1995.

[18] J. Gonzalez, J. Gimenez, and J. Labarta, “Automatic detection of parallel
applications computation phases,” in Proc. of the 23rd IEEE Intl.
Parallel and Distributed Processing Symp., 2009, pp. 1–11.

[19] T. Gamblin, R. Fowler, and D. A. Reed, “Scalable methods for moni-
toring and detecting behavioral equivalence classes in scientific codes,”
in Proc. of the 22nd IEEE Intl. Parallel and Distributed Processing
Symp., 2008, pp. 1–12.

[20] T. Gamblin, B. R. de Supinski, M. Schulz, R. Fowler, and D. A. Reed,
“Clustering performance data efficiently at massive scales,” in Proc. of
the 24th ACM Intl. Conf. on Supercomputing. New York, NY, USA:
ACM, 2010, pp. 243–252.

[21] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[22] M. Casas, R. M. Badia, and J. Labarta, “Automatic phase detection of
MPI applications,” Parallel Computing: Architectures, Algorithms, and
Applications, vol. 38, pp. 129–136, 2007.

[23] ——, “Automatic structure extraction from MPI applications tracefiles,”
in 13th International Euro-Par Conference, vol. 4641/2007, Rennes,
France, August 28-31 2007, pp. 3–12.

[24] J. Gonzalez, J. Gimenez, and J. Labarta, “Automatic detection of
parallel applications computation phases,” in International Parallel and
Distributed Processing Symposium (IPDPS’09), Rome, Italy, May 25-
29 2009.

[25] G. Llort, H. Servat, J. Gonzalez, J. Gimenez, and J. Labarta, “On the
usefulness of object tracking techniques in performance analysis,” in
Supercomputing 2013 (SC’13), Denver, CO, November 17-22 2013.

[26] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Tenth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-X), San Jose, CA, October 5-9 2002, pp.
45–47.

[27] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Discov-
ering and exploiting program phases,” IEEE Micro: Micro’s Top Picks
from Computer Architecture Conferences, November-December 2003.

[28] TU Dresden Center for Information Services and High
Performance Computing (ZIH), “VampirTrace 5.14.2 user manual,”
http://www.tu-dresden.de/zih/vampirtrace, March
2013.

[29] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel, “Introduc-
ing the open trace format (OTF),” in Proc. of 6th Int. Conf. on Comp.
Sci., ser. ICCS’06. Springer-Verlag, 2006, pp. 526–533.

[30] “Collaboration of Oak Ridge, Argonne, and Livermore benchmark
codes,” https://asc.llnl.gov/CORAL-benchmarks.

[31] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. B. Bell,
“Interactive exploration and analysis of large scale simulations using
topology-based data segmentation,” IEEE Trans. on Visualization and
Computer Graphics, vol. 17, no. 9, pp. 1307–1324, 2011.

[32] J. Bennett, V. Krishnamurthy, S. Liu, V. Pascucci, R. Grout, J. Chen,
and P.-T. Bremer, “Feature-based statistical analysis of combustion
simulation data,” IEEE Trans. Vis. Comp. Graph., vol. 17, no. 12, pp.
1822–1831, 2011.

https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
http://www.tu-dresden.de/zih/vampirtrace
https://asc.llnl.gov/CORAL-benchmarks

